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Learning curves are a core analytical method employed by cost analysts 
to estimate weapon system production costs. This study examines United 
States Air Force aircraft programs and compares the traditional (e.g., Unit 
Theory) learning curve model to a production rate learning curve model. 
While there are some previous studies examining production rate models, 
one novelty of this research is the size of the dataset, which comprises the 
largest military examination to date.  The results suggest the production rate 
model outperforms the traditional learning curve model.  Additionally, the 
analysis identifies the post-Initial Operational Capability (IOC) time period 
as the preferred milestone in the life-cycle to employ the production rate 
model. 
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1. INTRODUCTION 
 

Defense cost analysts employ a 
multitude of techniques to estimate 
the cost of a weapon system.  One of 
the most widely accepted and 
utilized techniques is the learning 
curve.  Learning curves are 
traditionally used to estimate 

recurring costs in a production 
process (Mislick and Nussbaum, 
2015).  While learning curves have 
been studied along a multitude of 
dimensions (Boone et al., 2021; 
Moore et al., 2022), empirical 
examinations incorporating a 
production rate (PR) variable in 
defense programs is sparse.  The 
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purpose of including a PR variable is 
to capture cost reductions that are 
realized through economies of scale 
(Government Accountability Office, 
2020).  However, the mixed results 
in the extant literature has led to 
some debate on whether the PR 
variable should be employed in cost 
estimates. Therefore, we examine 
the evidence in United States Air 
Force (USAF) aircraft to shed light 
on the issue.  

To the best of our knowledge, 
this study utilizes the largest USAF 
learning curve dataset ever collected.  
The robust dataset enables 
comparisons between traditional 
(e.g., Unit Theory) learning curve 
models and a PR learning curve.  
Thus, the purpose of this article is 
two-fold: 1) To discern if a PR 
model is preferred in USAF 
programs and 2) To determine when, 
in the acquisition process timeline, a 
PR model should be employed.  

Military aircraft are expensive.  
Unfortunately, cost growth has 
historically plagued these programs 
(Jones et al., 2023). Improving the 
toolkit for defense cost analysts is 
one small step towards better 
estimates and reducing future cost 
growth. This has implications for 
defense resource management in the 
form of better informed decisions 
and the resultant improvement in 
resource allocation. 

 

2. LEARNING CURVES AND 
THE PRODUCTION RATE 

MODEL 
 
Learning curves are routinely 

used to estimate recurring 
manufacturing costs in a multitude 
of industries (Womer, 1979).  
Defense cost analysts widely 
adopted these learning curve 
methodologies after Wright’s (1936) 
and Crawford’s (1947) seminal 
studies. 

Wright’s (1936) analysis of 
World War I aircraft production 
costs revealed a mathematical 
relationship between the quantity 
produced and the amount of labor 
hours (or cost) needed to complete 
the task.  More specifically, Wright 
found that as the quantity of units 
produced doubled, the cumulative 
average cost decreased by a constant 
percentage.  This insight became 
known in the learning curve 
vernacular as Cumulative Average 
Theory or the Wright Curve.  

Crawford (1947) subsequently 
found a similar relationship in his 
study using World War II aircraft 
production costs. The USAF 
commissioned his study to validate 
Wright’s theory (Mislick and 
Nussbaum, 2015). Crawford found 
that as the quantity of units produced 
doubled, the individual unit cost 
decreased by a constant percentage.  
This insight became known in 
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learning curve vernacular as Unit 
Theory. 

Mathematically, the formulation 
of Wright’s and Crawford’s curves 
are the same.  Differences lie solely 
in the interpretation of the variables 
themselves.  This paper employs 
Unit Theory (or the Crawford curve) 
as it is the more common technique 
used by US defense cost analysts in 
estimating recurring aircraft costs.  
Equation 1 denotes the traditional 
Unit Theory model. 
 

Y = AXb                    Equation 1 
    Where: 
        Y = the cost of unit X 
        A = the theoretical cost of unit 
one (T1) 
        X = the unit number 
         b = a constant representing the 
slope of the learning curve 

 
Learning curves capture the 

expected unit cost decrease as 
additional quantities are produced.  
But it is also reasonable to expect 
unit costs to decrease as the 
production rate increases 
(Government Accountability Office, 
2020).  This is known as the PR 
effect. 

The PR effect is in addition to 
the learning curve effect.  It captures 
cost reductions realized through 
economies of scale (Government 
Accountability Office, 2020).  Banks 
et al. (2016) attribute the PR effect 
to large fixed costs inherent in 

defense systems.  The Government 
Accountability Office (2020) 
identifies specific examples where 
economies of scale can occur, such 
as quantity discounts, reduced 
ordering, processing, shipping, 
receiving, and inspection costs. 

Regardless of the specific 
source, the impact of the PR effect is 
similar to the learning curve effect in 
that unit costs decrease as quantities 
increase. Where the PR effect differs 
from learning curves is that it lacks 
“memory” (Banks et al., 2016).  In 
other words, the PR only affects a 
specific lot’s unit cost.  The PR 
impact does not carry over to the 
next production lot (Banks et al., 
2016). 

Large et al. (1974) is the first 
known defense report that explicitly 
models the PR effect.  Their 
equation has been replicated by 
multiple outlets since that time, with 
slight changes in the PR variable 
nomenclature.  See Equation 2. 

 
Y = AXbRc                    Equation 2 

    Where: 
        Y = the cost of unit X 
        A = the theoretical cost of unit 
one (T1) 
        X = the unit number 
         b = a constant representing the 
slope of the learning curve 
        R = production rate (quantity 
per time period or lot) 
         c = rate coefficient 
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 In summary, Figure 1 depicts the 
traditional Unit Theory learning 
curve on the left and the PR model 
on the right.  Incorporation of the 
rate variable results in lower costs, 

as the slope of the curve is steeper.  
The empirical comparison of these 
two models with USAF data is the 
genesis of this paper. 

 

 
Fig. 1 Unit Theory and PR Model

  
2.1. Previous PR Studies 

Although Large et al. (1974) are 
not the first to discuss the PR theory, 
their mathematical modeling of the 
concept consistently appears in the 
literature as a seminal contribution.  
Somewhat ironically, Large et al. 
(1974) found that a generalized 
estimating equation was not reliable in 
their dataset of 29 aircraft.  Rather, 
while they believed the PR theory 
generally holds, they concluded that in 
any specific instance the effect 
depends upon the circumstances 
leading to a rate change.  As a result, 
they suggest that each case must be 
evaluated individually prior to usage.  

 In contrast, subsequent studies 
by Smith (1976) and Congleton and 
Kinton (1977) both found statistically 
significant relationships between 
production rate and direct labor hours.  

Both of these studies were limited in 
scope, but they inspired Bemis (1981) 
to examine the PR model further.    

Bemis (1981) used Selective 
Acquisition Reports (SARs) from the 
1950s to 1970s for his investigation.  
His empirical analysis on historical 
and on-going aircraft resulted in a 
recommendation for PR to be 
considered in defense cost estimates.  

Moses (1990) acknowledged 
these inconsistent findings within the 
literature and attempted to discern a 
set of conditions under which a PR 
model is preferred.  He found neither 
model dominated under all conditions.  
Rather, the PR model outperformed 
when there were large fixed costs, a 
growing production rate trend, or 
large variability in period-to-period 
production rates.  
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A more recent study by Arena et 
al. (2008) found some evidence of 
higher production rates reducing costs 
in fixed-wing aircraft.  While Banks et 
al. (2016) noted that PR effects were 
strongest in high quantity systems 
such as missiles.  Notably, their study 
was limited by the small dataset of 11 
defense systems.  Lastly, Boone et al. 
(2021) were not directly testing for a 
PR model, but their findings are still 
relevant to this research.  Boone’s 
suggested modification to the Wright 
curve results in a steeper slope during 
early production lots.  This idea of a 
steeper curve is commensurate with 
the PR effect.  

In summary, the previous PR 
study results are mixed.  The majority 
of studies point to PR being an 
important consideration in future cost 
estimates.  But many of these studies 
suffer from small datasets and/or the 
analyses were conducted decades ago.  
This endeavor seeks to fill that gap by 
utilizing the most robust, modern 
military aircraft dataset collected to 
date.   

 
3. DATA AND METHODS 

 
3.1 Data 

The data is sourced from 
Contractor Cost Data Summary 
Reports (CDSR), or DD 1921-2s 
(progress curve reports), through the 
Cost and Economics Division (FZC) 
of the Life Cycle Management Center 
(LCMC) at Wright-Patterson Air 
Force Base, Ohio.  The 1921-2 report 
captures recurring costs by unit or lot 

for selected reporting elements 
(Department of Defense, 2021).  The 
original dataset included 158 aircraft 
programs with 813 production lots.  
Table 1 shows the final dataset after 
applying an exclusion criteria 
screening.  The red font indicates 
removal of lots or programs. 

 
Table 1 Dataset 

 Number 
of Lots 

Number 
of 

Programs 
Original 
Dataset 

813 158 

Less than 3 
Units per 
Lot 

46 0 

Missing 
Data 

49 26 

Lack of 
Sequential 
Lots 

125 56 

Non-Aircraft 53 8 
Final 
Dataset 

540 68 

The first exclusion criterion 
removes aircraft that had less than 
three units in a production lot.  This 
criterion is consistent with Arena et 
al. (2008) who suggest a minimum 
lot size of three is needed to consider 
a PR variable as part of the learning 
curve model.  The second exclusion 
criterion removes 26 programs that 
have missing data.  The third 
criterion removes 56 programs that 
did not have sequential production 
lots or had less than 4 sequential 
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lots. Sufficient sequential lots are 
necessary to model learning curves.  
The fourth and final exclusion 
criterion removes eight non-aircraft 
programs.  These rotary wing and 
missile systems are outside the 
aircraft-centric focus of this analysis.  
The final dataset, therefore, consists 
of 68 programs comprised of 540 
lots. 

The 1921-2s report actual 
expenditure costs.  These are 
referred to as Then Year expenditure 
(TY exp) dollars (Office of the 
Secretary of Defense, Cost 
Assessment and Evaluation [OSD-
CAPE], 2021). Best practices 
necessitate normalization to 
Constant Price (CP) dollars prior to 
modeling and analysis (OSD-CAPE, 
2021).  Thus, the OSD published 
Raw Inflation Rates for aircraft 
procurement (3010 appropriation) 
were utilized to convert the 1921-2 
TY exp data into CP dollars.  
 

3.2 Method - Comparing 
Models 

The first investigative question 
seeks to determine if a PR model is 
preferred to the traditional learning 
curve. To discern this requires 
several steps. First, the traditional 
learning curve model (Y = AXb) 
from Equation 1 is transformed into 
log-log space and Ordinary Least 
Squares (OLS) regression is 
performed on each program. 
Because the 1921-2 data is in lot 

format, rather than individual units, 
the Y variable is the Average Unit 
Cost (AUC) and the X variable is the 
Lot Midpoint. 

Next, the Absolute Percentage 
Error (APE) is calculated from the 
regression model output.  The APE 
is calculated as shown in Equation 3.  
Note that the predicted AUC comes 
from the regression model while the 
actual AUC originates from the 
dataset. 
 
  

 
The APE data is then used to 

calculate a median APE (MdAPE) and 
mean APE (MAPE).  These metrics 
will be used in subsequent tests (to be 
discussed) when comparing the 
traditional and PR models. 

Lastly, the OLS regressions, 
APE, MdAPE, and MAPE 
calculations are duplicated for each 
program, but this time employing the 
PR model (Y =AXbRc) from Equation 
2.  With both the traditional and PR 
model data compiled, testing between 
the two approaches can occur.  

Model comparisons are 
conducted via two methods.  The first 
method utilizes a confidence interval. 
The MdAPEs from the traditional and 
PR models are differenced.  Then a 
histogram is created from the 
differenced MdAPEs and its’ 
associated confidence interval is 
calculated.  If the confidence interval 
does not contain zero, then the 



51 
 

traditional and PR models are 
different.  

The second method employs the 
Wilcoxon Signed Rank test.  The 
Wilcoxon Signed Rank test is a non-
parametric test for matched or paired 
data like the Sign test, but also 
considers the magnitude of the 
observed differences (LaMorte, 2017). 
Like the Sign test, the hypothesis for 
the Wilcoxon Signed Rank test uses 
the sample’s locations (often 
interpreted as the median for similar 
distributions) of the difference scores.  
The hypothesis for the Wilcoxon 
Signed Rank test is: 
     H0: the median of the population of  
     differences between the paired data 
= 0 
     Ha: the median of the population of  
     differences between the paired data 
≠ 0  

In other words, the Wilcoxon 
Signed Rank test determines whether 
there is a statistical difference between 
the traditional and PR models. 

 
3.3 Method – Acquisition Timeline 

 The second investigative question 
seeks to determine when, in the 
acquisition process timeline, the PR 
model should be employed.  The 
Initial Operational Capability (IOC) 
date is chosen as the point of 
demarcation for the analysis.  The 
IOC was chosen because it is a focal 
point in the acquisition timeline.  IOC 
denotes the point where a system is 
ready to perform its intended mission 
in an operational environment with an 

initial quantity of assets (AcqNotes, 
2023). 
 Table 2 illuminates the mapping 
process employed to answer this 
question.  The lot where the PR model 
becomes statistically significant is 
mapped in 10 percent increments 
(positive or negative) from the IOC 
date. 

 
Table 2 IOC% Mapping Example 

IOC% Model Example (0% is IOC) 
IOC % -

3
0 

-
2
0 

-
1
0 

0 1
0 

2
0 

3
0 

Progra
m #1 

X       

Progra
m #2 

   X    

Progra
m #3 

 X      

Progra
m #4 

    X   

Progra
m #5 

   X    

Progra
m #6 

 X      

Progra
m #7 

      X 

        
Sub-
Total 

1 2 0 2 1 0 1 

 
 A histogram is then compiled from 
the data in Table 2.  Descriptive 
statistics from the histogram provide 
the mean, median, and 95% 
confidence interval.  Lastly, a 
Wilcoxon Ranked Sign test is 
performed to determine whether the 
PR model occurs at IOC vice a point 
in time before (or after) IOC.    
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4. RESULTS 
 

4.1 Comparison of 
Traditional and PR Models 
There were 68 programs modeled 

with the traditional, Y = AXb learning 
curve construct.  The data was 
transformed into log-space and OLS 
regression was run.  Each program’s 
prediction value for the dependent 
variable was then compared to its 
original value to calculate the APE 
within each program.  Next, the 
process was duplicated for the PR 
model.  A sample from the 
calculations are shown in Table 3.  

 
Table 3 Sample Calculations 

Prog
ram 

Traditional PR 

M
A

PE
 D

iff
er

en
ce

 

M
dA

PE
 

D
iff

er
en

ce
 

 

M
A

PE
 

M
dA

PE
 

M
A

PE
 

M
dA

PE
 

Pgm. 
1 

1.8
% 

1.6
% 

1.8
% 

1.7
% 

7
% 

0% 

Pgm. 
2 

4.3
% 

2.4
% 

4.4
% 

2.3
% 

-
7
% 

2% 

Pgm. 
3 

2.0
% 

1.9
% 

1.7
% 

1.8
% 

-
6
% 

-
17
% 

Pgm. 
4 

5.3
% 

4.0
% 

3.5
% 

3.1
% 

-
23
% 

-
33
% 

Pgm. 
5 

2.1
% 

2.1
% 

2.2
% 

1.9
% 

-
6
% 

1% 

 
Analyzing the full set of 68 

programs showed that the PR model 
reduced the MdAPE by an average of 
10% compared to the traditional 
learning curve model.  The associated 

confidence interval had a lower bound 
of -19% and an upper bound of -1%.  
Note that the confidence interval did 
not contain zero, suggesting that there 
are differences between the models.  
Table 4 has these summary statistics 
for the MdAPE.  An examination of 
the MAPE has similar results.  The PR 
model reduced the average MAPE by 
23% in comparison to the traditional 
learning curve model. 

Table 4 MdAPE Differences 
N Mean Std 

Dev 
Lower 

CI 
Upper 

CI 
68 -10% 38% -19% -1% 
 
 Next statistical significance is 
discerned via the Wilcoxon Ranked 
Sign test.  The null hypothesis is that 
there is no difference between the 
traditional and PR curve, while the 
alternative states a difference exists.  
An alpha of 0.05 is used.  See Figure 
2. 

 
Fig. 2 Wilcoxon Test of MdAPE 

Differences 



53 
 

The two-tailed test returns a p-
value of 0.0042.  This result is well 
below the 0.05 threshold.  The 
evidence suggests that there is a 
statistically significant difference 
between the PR and traditional 
models.  Combining the results of the 
MdAPE analysis with the Wilcoxon 
results indicates that a PR effect is 
present in USAF military aircraft.  
Therefore, USAF cost analysts should 
consider employing a PR variable in 
their models. 

 
4.2 The Acquisition Timeline 

With the appropriateness of a PR 
model established, the next question is 
when in the acquisition timeline it is 
best utilized.  This is determined by 
mapping the lot number where the PR 
model became preferred to the 
program’s IOC date.  IOC was chosen 
because it is a focal point in the 
acquisition process.   

IOC is mapped in intervals of +/- 
10%.  This mapping process 
necessitated development of a 
mapping rule.  If a program falls 
between the interval 0.01 and 4.99 it 
maps to the smaller interval (e.g. 
24.68% is in the 20% interval); 
alternatively, a program between 5.00 
and 9.99 maps to the larger interval 
(e.g. 25.10 is in the 30% interval).    

The 68 programs from Table 1 
comprised the initial dataset.  
However, several data issues arose.  
These included unavailable IOC dates 
and IOC dates that were outside the 
production window.  After excluding 

programs with these issues, the final 
dataset consisted of 36 programs. 

Figure 3 shows the resultant 
histogram from the mapping process. 
Recall that zero denotes the IOC data 
and the programs are binned in +/- 
10% increments.  Results show that 
the median PR value is ~20% after 
IOC, with a mean of 13.8% post IOC.  
The associated 95% confidence 
interval ranges from 2% to 26% past 
IOC. 
 

 
Fig. 3 Histogram of IOC% 

 
 Next a Wilcoxon Ranked Sign test 
is performed to determine if the PR 
occurs at IOC vice a point in time past 
(or before) IOC.  An alpha of 0.05 is 
used.  Figure 4 shows a p-value of 
0.0285, which indicates there is a 
statically significant difference. 

 
Fig. 4 Wilcoxon Ranked Sign Test of 

IOC% 
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 The results from Figure 3 and 4 
suggest that including a PR variable 
in the learning curve model should 
occur once the production process 
has ramped up and manufactured the 
initial quantity necessary to attain an 
IOC.  To be conservative, defense 
cost analysts are cautioned that 
~20% past IOC is where economies 
of scale are expected to be realized. 
 

5. CONCLUSION 
 
 Learning curves are a core analytic 
method employed by defense cost 
analysts.  They are ubiquitously 
recommended in defense cost 
estimating textbooks, manuals, guides, 
and best practices (Mislick and 
Nussbaum, 2015; Government 
Accountability Office, 2020; OSD-
CAPE, 2022).  Published support for 
modifying this core technique to 
include a PR variable that captures 
economies of scale has grown over 
time (Kunc et al., 2018; Government 
Accountability Office, 2020; OSD-
CAPE, 2022).  Yet previous empirical 
investigations into the efficacy of the 
PR modified model have been 
sporadic and are mired in small-scale 
datasets.   
 This paper sought to resolve the 
ambiguity regarding practical 
applicability of the PR model in 
military aircraft.  Employing the 
largest known dataset to data, the 
results provide optimism that the PR 
model can be utilized.  The analysis of 
68 USAF military aircraft suggests the 
PR model is preferred to the 

traditional model.  More specifically, 
the MdAPE error was reduced an 
average of 10% by utilizing the PR 
model.  Due to the large production 
cost of military aircraft, the impact of 
a 10% deviation is not trivial.  It often 
translates to millions of dollars per 
aircraft.  These impacts pertain to the 
recurring flyaway cost level of 
analysis. 
 While the results are promising, 
caution is also advised due to several 
limitations.  First, the dataset did not 
allow for analysis of different aircraft 
platform types.  In other words, it 
could be that bombers, fighters, 
trainers, or cargo planes have unique 
characteristics that impact the 
generalized results.  Second, there are 
likely to be unique, program specific 
effects that have impacts on recurring 
costs.  These include contract 
specifications, tooling, or labor 
considerations and they should be 
deliberated upon prior to the decision 
to employ a PR model in favor of a 
traditional learning curve model.  In 
other words, practitioners should take 
care to know their program first, and 
incorporate those unique 
characteristics in their estimating 
methodology.  That caution is not 
unique to this analysis, rather it 
represents best practices in the cost 
estimating community.   

In summary, ameliorating cost 
growth in defense programs is only 
achievable when cost estimators are 
equipped with the best available tools.  
The findings of this paper support 
guidance suggesting a PR variable is 
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important to consider when 
developing an aircraft learning curve 
model.  Additionally, practitioners are 
advised to only employ the PR model 
post-IOC.  These enhancements to 
current practices can lead to better 
informed decisions and improved 
resource allocation in the defense 
arena.  
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